Group-wise Deep Co-saliency Detection

نویسندگان

  • Lina Wei
  • Shanshan Zhao
  • Omar El Farouk Bourahla
  • Xi Li
  • Fei Wu
چکیده

In this paper, we propose an end-to-end group-wise deep co-saliency detection approach to address the co-salient object discovery problem based on the fully convolutional network (FCN) with group input and group output. The proposed approach captures the group-wise interaction information for group images by learning a semantics-aware image representation based on a convolutional neural network, which adaptively learns the group-wise features for co-saliency detection. Furthermore, the proposed approach discovers the collaborative and interactive relationships between group-wise feature representation and single-image individual feature representation, and model this in a collaborative learning framework. Finally, we set up a unified end-to-end deep learning scheme to jointly optimize the process of group-wise feature representation learning and the collaborative learning, leading to more reliable and robust co-saliency detection results. Experimental results demonstrate the effectiveness of our approach in comparison with the state-of-the-art approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-salient Object Detection Based on Deep Saliency Networks and Seed Propagation over an Integrated Graph

This paper presents a co-salient object detection method to find common salient regions in a set of images. We utilize deep saliency networks to transfer co-saliency prior knowledge and better capture high-level semantic information, and the resulting initial co-saliency maps are enhanced by seed propagation steps over an integrated graph. The deep saliency networks are trained in a supervised ...

متن کامل

Deep Learning for Object Saliency Detection and Image Segmentation

In this paper, we propose several novel deep learning methods for object saliency detection based on the powerful convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify an input image based on the pixel-wise gradients to reduce a cost function measuring the class-specific objectness of the image. The pixel-wise gradients can be efficiently compute...

متن کامل

A Deep Learning Based Fast Image Saliency Detection Algorithm

In this paper, we propose a fast deep learning method for object saliency detection using convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify the input images based on the pixel-wise gradients to reduce a pre-defined cost function, which is defined to measure the class-specific objectness and clamp the class-irrelevant outputs to maintain image...

متن کامل

A Review of Co-saliency Detection Technique: Fundamentals, Applications, and Challenges

Co-saliency detection is a newly emerging and rapidly growing research area in computer vision community. As a novel branch of visual saliency, co-saliency detection refers to the discovery of common and salient foregrounds from two or more relevant images, and can be widely used in many computer vision tasks. The existing co-saliency detection algorithms mainly consist of three components: ext...

متن کامل

Non-rigid Object Tracking via Deep Multi-scale Spatial-Temporal Discriminative Saliency Maps

In this paper we propose an effective non-rigid object tracking method based on spatial-temporal consistent saliency detection. In contrast to most existing trackers that use a bounding box to specify the tracked target, the proposed method can extract the accurate regions of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017